Your topics:
- How damaged nuclear plant's radiation gets into food, water
- Les Miserables: What makes people cry in films?
- Japan and Russia agree to resolve island dispute
- Whole Foods plans to open a health resort
- How to Repel an Earthquake
- Nursing exam pass rate down among foreign applicants
- Cell phone data analysis dials in crime networks
- Facebook spreads like a virus with no cure
- Test decodes dolphins' math skills | Numbers
- Dung beetles steer by the Milky Way
- Economic Impact on Olympic Host Countries
- A Smartphone That Converts Text to Braille Developed for the Blind
- How Music Affects Teens / Music therapy for treating illness
- Euro Zone Releases Next Set of Loans
- Types and characteristics of German Gothic Novel
- The Plot to Destroy America's Beer
- More Work Goes 'Undercover'
- Will we ever ... travel faster than the speed of light?
- Molecule in meat may increase heart disease risk
- Opportunity Cost
- The Long-Term Effects of Divorce
- Why are investors punishing Apple?
- Switzerland to limit immigration from all EU state
Please check the topics your proposed and the number for your title should be remembered. You will have to upgrade your topic by adding some information and make another presentation next time.
Assignment 1
Earliest evidence for the use of pottery
(main idea)
- Nature
- 496,
- 351–354
- doi:10.1038/nature12109
- Received
- Accepted
- Published online
(abstract structure)
Pottery was a hunter-gatherer innovation that first emerged in East Asia between 20,000 and 12,000 calibrated years before present1, 2 (cal BP), towards the end of the Late Pleistocene epoch, a period of time when humans were adjusting to changing climates and new environments.
Ceramic container technologies were one of a range of late glacial adaptations that were pivotal to structuring subsequent cultural trajectories in different regions of the world, but the reasons for their emergence and widespread uptake are poorly understood.
The first ceramic containers must have provided prehistoric hunter-gatherers with attractive new strategies for processing and consuming foodstuffs, but virtually nothing is known of how early pots were used.
Here we report the chemical analysis of food residues associated with Late Pleistocene pottery, focusing on one of the best-studied prehistoric ceramic sequences in the world, the Japanese Jōmon.
We demonstrate that lipids can be recovered reliably from charred surface deposits adhering to pottery dating from about 15,000 to 11,800 cal BP (the Incipient Jōmon period), the oldest pottery so far investigated, and that in most cases these organic compounds are unequivocally derived from processing freshwater and marine organisms.
Stable isotope data support the lipid evidence and suggest that most of the 101 charred deposits analysed, from across the major islands of Japan, were derived from high-trophic-level aquatic food.
Productive aquatic ecotones were heavily exploited by late glacial foragers3, perhaps providing an initial impetus for investment in ceramic container technology, and paving the way for further intensification of pottery use by hunter-gatherers in the early Holocene epoch.
Now that we have shown that it is possible to analyse organic residues from some of the world’s earliest ceramic vessels, the subsequent development of this critical technology can be clarified through further widespread testing of hunter-gatherer pottery from later periods.
0 件のコメント:
コメントを投稿